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Objectives

• Simulate flow of particles under vacuum 
conditions

• Benchmark existing research of Copper vapour

• Identify wall interaction behaviour 

• Expand upon current boundary patches

• Realistic modelling of metallic vapour 



Physical Vapour 
Deposition 

• Physical Vapour Deposition (PVD) is under 
development for galvanising steel strip

• Metallic coating with ZnMg vapour

• Thin coating with great surface appearance 

• Excellent corrosion resistance 

• Reduction of Zinc consumption 

• Vacuum conditions have to be sustained 
continuously 



Rarefied Gas

• Low pressure conditions for coating equates to higher 

Knudsen numbers, 𝐾𝑛 =
𝜆

𝐿

• Traditional CFD solving flow using the N-S equations becomes 
inadequate for rarefied gas

• DSMC Direct Simulation Monte Carlo Method

CFD Governing Equations 



Direct Simulation Monte Carlo 
Method (DSMC)

DSMC is a probabilistic method pioneered by Dr Graeme Bird
• OpenFOAM, open source CFD software

• Populates mesh with particles including boundary condition 
interactions 

• Update particle indexing – cell updates for nearest neighbour 
collisions 

• Performs collisions stochastically

Rarefied gas conditions occur in:
• Re-entry space capsule in upper atmosphere

• Atmosphere of satellites, asteroids and comets

• Nozzles and jets in space environment 

• Thin film deposition  

Image Source: https://www.nasa.gov/mission_pages/constellation/multimedia/orion_contract_images.html



Variable Hard Sphere 
(VHS)

m1

m2

d-ref

Quantum scale Kinetic scale

• Essential to simulate particle collisions in 
(DSMC)

• Cross-section collisions (dref) derived from 
coefficients of viscosity (𝜇ref) 

• Angular scattering
• Theoretically determined from the variable 

hard sphere (VHS)method



Vacuum Interrupter

• Used as circuit breaker switch in high voltage networks

• Vacuum sealed chamber 

• Metal arc forms between open contacts

• Copper vapour deposited anywhere within the chamber 

• Deposited vapour causes component failure 

Contact Point

K. Hencken, “Investigation of Metallic Vapor Condensation 
in a Vacuum Interrupter using dsmcFOAM DSMC 

Introduction,” 9th OpenFOAM® Work., 2014

Vacuum Interrupter Image Vacuum Interrupter simplified  



Benchmarking

Walls

Inlet

Condensing 

Shield

Wedge faces

(Green and Pink)

• 5 degree axisymmetric model 
• Approximate dimensions   
• FluentMeshToFoam ASCII mesh

• 3D image of Vacuum Interrupter 

360° revolved axisymmetric image5° revolved axisymmetric image



Metallic Vapour

Copper properties: Sourced from; Venkattraman and A. A. Alexeenko, “Direct 
simulation Monte Carlo modeling of metal vapor flows in application to thin film deposition,” 
Vacuum, vol. 86, no. 11, pp. 1748–1758, 2012.

• Reference Diameter (VHS) = 0.450 (nm)

• Reference Temperature 300 K

• Temperature dependence, ω = 0.920

• Angular scattering parameter, α = 0.420 

Calculated Copper properties: 

• Mass flow rate, 20 grams of Copper per second

• Number density Copper 1.9e23



Direct Simulation Monte Carlo 
(DSMC) Simulations

• Argon particle flow mean velocity 

• Copper particle flow wall interactions (Number density field)

Collisions of Copper particles Argon gas flow



Absorbing Wall Patch

• Adaption of MixedSpecularDiffuse wall 
interaction model 

• Tracking particles that interact with wall 
surfaces 

• Deleting the particles upon wall collisions 

• Three possible simulated wall interactions

K. Hencken, “Investigation of Metallic Vapor Condensation 
in a Vacuum Interrupter using dsmcFOAM DSMC 

Introduction,” 9th OpenFOAM® Work., 2014

Copper deposited on surface

Wall interaction 



Vapour Distribution Box
(VDB)

• Electro-magnetic Levitation (EML) PVD

• Benchmarked geometry enabled the creation of strip surface

• Boundary conditions determined from benchmark analysis 

VDB and Strip – 2D



Vapour Distribution Box
(VDB)

• Particles interacted with surfaces

• 3D simulation very computationally expensive

• Vacuum chamber will not be completely evacuated

Coating Chamber – 3D VDB and Strip – 3D



Next Steps

• Development of the absorbing wall function

• Comparison of results with the benchmark

• Zinc vapour simulation within the VDB

Future work: 

• Optimisation of vacuum lock design

• Pumping requirements of system 



Summary

• Simulated particle flow using the DSMC Method

• Applied simplified benchmark to PVD application 

• Metallic Vapour simulated for Copper 

• Absorbing wall boundary patch in initial stage

• Further investigation required to model Zinc 
vapour
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